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An expansion of the Liapunov index in powers of a small parameter is obtained for 

second-order with small noise for linear stochastic systems. 

1. We shall investigate second-order linear stochastic systems of the form 

dXe(t)/dt = BXe(t) + e ; o,X"(t)&' (t) 
r=t 

(1.1) 

where Xc(t) is a two-dimensional column-vector,B and U, = 11 UfjII are constantfororder 2 X 2 

-matrices, E,' (t) (r = 1, 2,. . ., k) are independent white noises, E>O is a small parameter. 

System (1.1) will be understood in Ito's sense. Let Xe (t), t> 0 be a nontrivial solution of 

this system. In the non-degenerated (ergodic) case (/l/, Chapter VI) there exists a unique 

Liapunov index x(e)of system (1.1) 

It is well known /l/ that for asymptotic stability with probability one of the trivial solu- 

tion of system (1.1) it is necessary and sufficient that the Liapunov index X(E) be negative. 

A method has been proposed in /l/ which in the case of second-order systems enables us to 

obtain an explicit formula for the Liapunov index. This method is connected with the constru- 

ction of the density of an invariant measure on a circle for the process Xc(t)/ 1 X"(t) 1, which 

satisfies a second-order linear differential equation solvable in quadratures. The Liapunov 

index X(E) is expressed as an integral of a known function with respect to this measure. The 

density pE(cp) of the invariant measure satisfies the equation /l/ 

&& [y2((P) Pe ((P)l - $- [(H (‘T’) + E2F (Cp)) Pe (‘?)I = 0, (1.2) 

'PEVXW 

H&4= - Ph(cph Ah-4 

the periodicity and norming conditions 

~"(0)=@(2$ yll.D(Y)dlp=l 
0 

(1.3) 

Henceforth we assume that Y'(Y)&-0 for all 'p FZ [0,2 n]. This ensures the ergodicity of 

process Xe (t)/jXe (t)I. The Liapunov index X(E) is computed by the formula 

x(s) ='f [(Bh(cp), h(Y)) + s*L(Y)l p'(Y)@ 
(1.4) 

0 

The solution of Eq.(1.2) with the periodicity condition (the first relation in (1.3)) can be 
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written as (/l/, Chapter VI) 

(1.5) 

The constant C(E) is determined from the norming condition (the second relation in (1.3) ). We 

note the following properties of the above-mentioned functions, which can be verified directly: 

Y2 (cp + n) = Y2 (cp), I-I (cc + n) = H (cp), F (cp -t z-c) = F (cp)> L (9 + n) = L (v) (1.6) 

Q (cp + n) = Q (9) n (n), f (VI + n) = f (‘F) + f (n)7 P (9 + n) = PC(V) 

The question of the expansion of the Liapunov index in powers of a small parameter was 

touched upon in /2/ and is closely connected with the material in paper /3] (also see the 
references /4,5/ mentioned in /3/). When the eigenvalues of matrixB are real and distinct, a 
detailed study of formula (1.5) shows that p"(q) is a delta-function and cannot be expandedin 
powers of E. The explicit formula for x(s) contains a number of complex Laplace-type integ- 

rals. The case of complex eigenvalues of matrix R is simpler. 

The main results of the present paper are simple explicit formulas for the first approx- 

imation oF.the asymptotic expansion of the Liapunov index x (6). 

2. Case of real unequal eigenvalues of matrix B. Without loss of generality 

we can take it that R = diag (a, b), a> b. Using formula (1.5) for the density kc((,;), we find 

C(E) from the norming condition in (1.3). Further, having substituted I~'(c(>) into (1.4), we 

obtain 

X (E) = a - (a - b) 1, (&)/lo(E) -1 E”z, (&)/lo (E) (2.1) 

Z,(E)= 5 s i,(q) ;>‘;;;!‘9;, es,, 9 dvd6, m =0,1,2 

i, (v) ='I: i, (q) = sin2 (q), i, (~8) = L (I+) 

g(q,6)rf(cp+6)--@)=(a- Cjrr~n+$df 

‘1, 

We prove several auxiliary statements. 
lo. As E-+O the following asymptotic relations are valid: 

n/4 

I,,, (E) _ J,,,(E) = P, (e) Q (E), P,(e) = 5 lrn (‘) -’ ‘- ’ (T)i’31 dcp 
y2 (cp) $1 (v) 

--n/4 

(2.2) 

3X/4 

Q(E)~= \ S2(t)exp -$dt, m=O, I,2 
X,.1 

Proof. We represent each of the integrals I,, as the sum J,j-K,, where J, are integrals 

of the corresponding integrands from (Z-l), taken over the 
I 

e 
union of rhombuses P, UP, (Fig.l), while Km are integrals of 

the same functions over the set [O,n;o,n]\P, U p,,which we de- 

note PI UPS. The integrals over each of the rhombuses P, and 

P, reduce, by the change of variables t= q+6 for PI and t= 

q+fi--n for Pa, to a product of two one-dimensional integrals. 

Thanks to the properties (1.6) of functions y (cp), L (VP). Q (VP) 
and f (cp) I after manipulations we obtain the representations 

indicated in (2.2) for Jm. Further, it can be established 

that the function g('p,6) in the square IO,n;O, nl takes a maxi- 

mum value at two points: (O,~/Z)EP~ and (n,n/Z) E P,. According to 

'p 
Laplace's method /6/, these points make the principal contri- 

small 
Q =I4 IF 

bution to the asymptotic behavior of integrals 1, for 
values of e. Hence follows the validity of the asymptotic 

Fig.1 representations (2.2). 
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2O. As E-+U the following asymptotic representation is valid for the Liapunov index: 

x (4 - a - (a - b) J, (a) / J, (E) f eZJ.2 (E) i Jo (e) (2.3) 

Proof. Using formula (2.1), we write x(e) as: 

X(E) = a - (a - b) JriJr, + &VJJ# + p0 (E) 

PO (E) = (a - b) (J,lJ, - IJI,) + EZ (I,iI, - J.JJ,) 

We have 

IJJJ0 -II/I, I = lJfKll - J,K,~/(I,1,) Q Z&/I,, since JI Q J,and & < K0 

Analogously 

IW, - J,iJ,i< 2LKoil,, L =,gFi," WI. since {K% 14 L&andJ,]<LJa. 

Therefore, we obtain the following inequality 

(2.4) 

(2.51 

We denote 

where QI and QS are closed regions in the square [0,x; 0, n], such that (0, n/2) es Q1, (zc,xlZ) E Qz 
(Fi.g.1). The function g('p,B) takes a maximum value at points (0,x/2) and (n,n/Z); therefore, 
regions QI and Qz can be found such that the inequality ge>gI is satisfied. Then 

Ya =cpzpnl HZ (cp), Q ;=[y2g, 52 (rp), V = min 
mea, Xl 

Y2 (cp), 0 zlyfnlR(q) 

(s is the area of the union of regions Q,UQa,6>0). From the inequality just obtained and 
from inequality (2.5) results the following estimate: 

(2.6) 

Hence follows the asymptotic representation (2.3). The latter representation enables us to 
find an asymptotic expansion for x(e) in powers of e2. This expansion can be obtained by 
applying Laplace's method to each of the integrals occurring in (2.3). However, to obtain 
the first approximations and estimates for the remainders it is more convenient to expand in 
powers of 9 not the individual integrals but their ratios. For this we need auxiliary state- 
ments. 

3O. Let h(rp) be a function differentiable on [--n/4,&4], h(O)=Q. Then 

(2.7) 

The expression for the constant A is obtained by an integration by parts of the integral for 
R (4. 

4O. The following formulas are valid: 

pL(8) = E2 a + E$I (e), p2 w - PO Cc) PO (8) 
= L (0) + eaf2 (4 (2.8) 

where f%(s) and %Pz (8) are estimated by some constants , uniformly with respect to s-The first 
of formulas (2.8) is obtained by an integration by parts of the integral PI(~) with the aid 
of certain elementary manipulations and of applying 30. The second formula in (2.8) is obtain- 
ed with the aid of analogous manipulations and of statement 3O. As a result, for p1 (.a) and 
h(E) we have the estimates 
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where A, and A, are constants defined in 3O. 

Theorem 1. The expansion 

h’ 

x (E) = a - g c (d’)’ + “*P (4 + PO (El 
T=l 

(2.9) 

where P(E) is bounded in modulus by some constant independent of E and p,,(E) satisfies inequal- 

ity (2.6), holds for the Liapunov index of system (1.1). 

The proof follows from (2.3), (2.4), statement 2O, (2.8) in statement 4O, and the easily 

verifiable equalities 

Y2 (0) = i (a,y*, (2.10) 

T=;L r=I 

1 P (F) / = 1 !a - b) fh (E) f f’z (E) I< $$ i- (a - 0) AI + As 

3. Case of complex eigenvalues of matrix B. Without loss of generality we can 

take it that 

a b 
B= II II -b a 

where a, b>O are real numbers. Then H (cp) = -b. The solution of Eq.Cl.2) can be represent- 

ed as 
n-1 

PE (cp) = B ~~~~~ (cpj + Prne (cp) 
m=ll 

After substitution into (1.2) and using the periodicity and norming conditions 

U, (0) = U, (2n), rnE (0) = rnE (2n) 

2.~ s hn (CP) &== 1 1, m=O 2n 

s 0, m#O' o 
r,e(cp)&=o, m=O,I,..., n-l 

II 

we find 

uo (cp) = & I 

%(cp)=$ po?Q Z&IL-I (Cp) - + $ (y” (9) urn-1 (Cp)) - 

k’s” F(6)um-#+)de], m=1,2 ,..., n-1 
0 

r,“W = 62 (I?) exp y-d6 4 

26 ’ 
7 ~?L(~)QV+)exP--_EB s 

f (6) (j* 
I 

” 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

The constants C,(E) and c,(E) are determined from conditions (3.2) for the functions me (cp). 

Using the explicit representation (3.4) for me(~), we can obtain the estimate 

Theorem 2. The expansion 

(3.5) 

(3.6) 
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holds for the Liapunov index of system (1.1). In particular, when n = 1 

x(e)=u+gL[( U,1* - UT2’)2- (UT*’ $ I&=)‘] + E'&(E) 
1‘=1 

(3.7) 

Proof. Formula (3.6) follows from (3.1) and (1.4) (in this case @h(q), h(q)) = a). The 

estimate for the remainder R,(E) follows from inequality (3.5). Formula (3.7) is obtained 

from (3.6) by direct computations. 

The following statement is valid: 

so. Let urz2 = u," and urzl = - u,m, r = 1, 2,. . ., k (which is equivalent to the pairwise 

commutativity of the matrices B, ulr.. ., ok). Then the exact formula 

x(e)= a + ; i [((J,'S)Z - ($'I)21 (3.8) 

T=L 

holds for the Liapunov index of system (1.1). 

Proof. Under the conditions given,direct computations yield 

Therefore, from (3.3) with m = 1 we obtain 

Consequently, U, = 0 and R,(e)= 0 in formula (3.7); here (3.7) turns into (3.8). 

4. Case of real equal eigenvalues of matrix B. When B = diag(a,a), H(q)=0 and 

the density p(q) is independent of e (see Eq.(1.2)). Therefore, the formulafortheLiapunov 

index of system (1.1) becomes 

x(s) = a i- sz f L(cp)p(cp)@ (4.1) 
0 

where P Cd satisfies the equation 

and the conditions (1.3). For the complex case when 

(4.2) 

without dwelling on the very cumbersome calculations we present the asymptotic fomlula 

(4.3) 

5. The Liapunov index for Stratonovich-systems. Let us extend the results to 
Stratonovich-systems of stochastic equations 

dt = BXe (t) + E i (s,X& (t) ET’* (t) 
dXe (t) 

r=1 

(5.1) 

The formulas for the Liapunov index of system (5.1), which we denote x*(E), are obtainedfrom 

the arguments and formulas presented above if the functions F(cp) and L(T) are replaced, re- 

spectively, by the functions 

F(q)- (M(cp), A!@), L(V) f (W(cp), h(q)) (Bo=+k u:) 
?=I 

Let us write out the definitive formulas for x* (E) (the matrix B below has the previous form). 
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In the case of real unequal and complex eigenvalues of matrix B we have, respectively, 

X* (F) = U + G-f U,‘2U7*1 + Fry* (F) + PO* (F) (5.2) 
i=1 

x* 6) = a + ; i [(cT~‘~ + CJ~=)~ + (url* - ‘T,~~)~] + E&RI* (e) 
r= I 

Here PO* (E) and p* (s) are estimated analogously to pa (8) and P(a) (see (2.6), (2.10) with 

due regard to the changes in the functions indicated; RT (E) is estimated analogously to R,(E) 
in formula (3.7) with due regard to what has been said. If in the latter case o,22 = crll, 
cril = _ srl? , r = 1, 2,. . ., k, then there holds the exact formula 

x* = (1 (5.4) 

In case R = diag(a, a) 
?X 

x* (e) = a : 2 c [L(v) -I- cm (VI? h @))I p* (v) d’v 
E 

(5.5) 

where it* (r~) is the solution of the equation 

satisfying conditions (1.3). In the case of (4.2) formula (4.3) holds for x*(E)!. 

Example 1. A Stratonovich-system is asymptotically stable with probability one while 

the I&-system is unstable. Let 

n <n, k= 1, 51 , ?=I 

Then (see (3.8) and (5.4)) x=-a>>,~*-a<~. 

Example 2. An unstable deterministic system becomes asymptotically stable when spec- 

ific noises are imposed, understood both in the sense of I& and in the sense of Stratonovich. 

Let 

S=diar(a, b). n>b, k=Z, 

We have 
y* (9) = 202, F (cp) = 0, I, (9) = 0, !J (lp) = 1. 

Therefore, here x* (e)= X(E) and (see (2.9)) 

x (F) = a - E%a f "p (E) _1- p0 (F) 

As the regions Q1 and Qz we take the rhombuses shown in the Fig.1. Then the sumoftheirareas 

is S = n2/16 and 

a-b 
#I=--@, ~j=sfi I~~(“)I<24(a-b)exp - 

1 
(a - b) (n-1) 

4s+a 1 

i.e. D = 24, 6 = (a - b) (r/r- 1)/40*. Taking into account the last inequality, we obtain 

Il%(E)IG 
1536(3 + 2 fi)@ e4 

t?(a ~ h) 

We estimate P(E) on the strength of (2.10) 

,@ (pj,< 4 (41~ +6)@ 
a-b 

The following estimate is obtained for x(e) 

Hence it is clear that if a>O, then for negative values of b sufficiently large in absolute 

value (say, b<-2.104a) and for a specified (J we can find an interval of values of e, in which 

Y.(E) <O. Thus, unstable systems exist which under imposed noises become asymptotically stable. 

In the example given, if a = 0, b < 0, then for O<E<O.O~G/(J we obtain x(F)<o, i.e., asym- 

ptotic stability holds. 
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